In transmission-SAXS (TSAXS), the x-ray beam hits the sample at normal incidence, and passes directly through without refraction. TSAXS is normally considered in terms of the one-dimensional momentum transfer (q); however the full 3D form of the q-vector is necessary when considering scattering from anisotropic materials. The q-vector in fact has three components:

This vector is always on the surface of the Ewald sphere. Consider that the x-ray beam points along +y, so that on the detector, the horizontal is x, and the vertical is z. We assume that the x-ray beam hits the flat 2D area detector at 90° at detector (pixel) position Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \scriptstyle (x,z)}
. The scattering angles are then:
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{alignedat}{2}\theta _{f}&=\arctan \left[{\frac {x}{d}}\right]\\\alpha _{f}^{\prime }&=\arctan \left[{\frac {z}{d}}\right]\\\alpha _{f}&=\arctan \left[{\frac {z}{d/\cos \theta _{f}}}\right]\end{alignedat}}}
where
is the sample-detector distance, Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \scriptstyle \alpha _{f}^{\prime }}
is the out-of-plane component (angle w.r.t. to y-axis, rotation about x-axis), and
is the in-plane component (rotation about z-axis). The alternate angle,
, is the elevation angle in the plane defined by
.
Total scattering
The full scattering angle is:
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{alignedat}{2}2\theta _{s}=\Theta &=\arctan \left[{\frac {\sqrt {x^{2}+z^{2}}}{d}}\right]\\&=\arctan \left[{\frac {\sqrt {(d\tan \theta _{f})^{2}+(d\tan \alpha _{f}^{\prime })^{2}}}{d}}\right]\\&=\arctan \left[{\sqrt {\tan ^{2}\theta _{f}+\tan ^{2}\alpha _{f}^{\prime }}}\right]\\&=\arctan \left[{\sqrt {\tan ^{2}\theta _{f}+{\frac {\tan ^{2}\alpha _{f}}{\cos ^{2}\theta _{f}}}}}\right]\\\end{alignedat}}}
The total momentum transfer is:
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{alignedat}{2}q&={\frac {4\pi }{\lambda }}\sin \left(\theta _{s}\right)\\&={\frac {4\pi }{\lambda }}\sin \left({\frac {1}{2}}\arctan \left[{\frac {\sqrt {x^{2}+z^{2}}}{d}}\right]\right)\end{alignedat}}}
Given that:
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{alignedat}{2}\cos(\arctan[u])&={\frac {1}{\sqrt {1+u^{2}}}}\\\cos(2\theta _{s})&={\frac {1}{\sqrt {1+({\sqrt {x^{2}+z^{2}}}/d)^{2}}}}\\&={\frac {d}{\sqrt {d^{2}+x^{2}+z^{2}}}}\end{alignedat}}}
We can also write:

Where we take for granted that q must be positive.
In-plane only
If Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \scriptstyle \alpha _{f}=0}
(and Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \scriptstyle \alpha _{f}^{\prime }=0}
), then Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \scriptstyle q_{z}=0}
, Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \scriptstyle 2\theta _{s}=\theta _{f}}
, and:

The other component can be thought of in terms of the sides of a right-triangle with angle Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \scriptstyle \theta _{f}=0}
:
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{alignedat}{2}q_{x}&=q\cos(\theta _{f}/2)\\&=2k\sin(\theta _{f}/2)\cos(\theta _{f}/2)\\&=k\sin(\theta _{f})\\q_{y}&=-q\sin(\theta _{f}/2)\\&=-2k\sin(\theta _{f}/2)\sin(\theta _{f}/2)\\&=-k\left(1-\cos \theta _{f}\right)\\&=k\left(\cos \theta _{f}-1\right)\\\end{alignedat}}}
Summarizing:
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \mathbf {q} ={\frac {2\pi }{\lambda }}{\begin{bmatrix}\sin \theta _{f}\\\cos \theta _{f}-1\\0\end{bmatrix}}}
Out-of-plane only
If Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \scriptstyle \theta _{f}=0}
, then
, Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \scriptstyle \alpha _{f}^{\prime }=\alpha _{f}=2\theta _{s}}
, and:

Components
The momentum transfer components are:
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{alignedat}{2}q_{x}&={\frac {2\pi }{\lambda }}\sin \theta _{f}\cos \alpha _{f}\\q_{y}&={\frac {2\pi }{\lambda }}\left(\cos \theta _{f}\cos \alpha _{f}-1\right)\\q_{z}&={\frac {2\pi }{\lambda }}\sin \alpha _{f}\end{alignedat}}}
Check
As a check of these results, consider:

Where we used:
![{\displaystyle {\begin{alignedat}{2}\sin(\arctan[u])&={\frac {u}{\sqrt {1+u^{2}}}}\\\sin \theta _{f}&=\sin(\arctan[x/d])\\&={\frac {x/d}{\sqrt {1+(x/d)^{2}}}}\\&={\frac {x}{\sqrt {d^{2}+x^{2}}}}\end{alignedat}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/fc9628f0d308053600f4e02d8f80c69fc9f356d0)
And, we further note that:
![{\displaystyle {\begin{alignedat}{2}\cos(\arctan[u])&={\frac {1}{\sqrt {1+u^{2}}}}\\\cos \theta _{f}&={\frac {1}{\sqrt {1+(x/d)^{2}}}}\\&={\frac {d^{2}}{\sqrt {d^{2}+x^{2}}}}\end{alignedat}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/584da470743b7feac2b55988526dabce5b4313c4)
Continuing:
