DWBA Equation in thin film
Using the notation Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T_i = T(\alpha_i)}
for compactness, the DWBA equation inside a thin film can be written:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} I_d(q_{z}) & = | T_i T_f F(+Q_{z1}) + T_i R_f F(-Q_{z2}) + R_i T_f F(+Q_{z2}) + R_i R_f F(-Q_{z1}) | ^{2} \\ \end{align} }
Expansion (incorrect)
WARNING: This incorrectly ignores the complex components.
Terms
If one expands the
of the DWBA, one obtains 16 terms:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{matrix} & (T_i T_f) & (T_i R_f) & (R_i T_f) & (R_i R_f) \\ (T_i T_f) & T_i^2T_f^2 & T_i^2 T_f R_f & T_iR_iT_f^2 & T_iR_iT_fR_f \\ (T_i R_f) & T_i^2T_fR_f & T_i^2R_f^2 & T_iR_iT_fR_f & T_iR_iR_f^2 \\ (R_i T_f) & T_iR_iT_f^2 & T_iR_iT_fR_f & R_i^2T_f^2 & R_i^2T_fR_f \\ (R_i R_f) & T_iR_iT_fR_f & T_iR_iR_f^2 & R_i^2T_fR_f & R_i^2R_f^2 \\ \end{matrix} }
Equation
The equation can thus be expanded as:
Simplification
We can rearrange to:
We can rewrite in a more compact form using the notation
and
:
Expansion
Terms
If one expands the
of the DWBA, one obtains 16 terms:
Equation
We take advantage of a more compact form using the notation
and
. The DWBA equation can thus be expanded as:
Simplification
We can rearrange to:
We define
, and note that for any complex number
, it is true that
. Thus:
Breaking into components
The experimental data
can be broken into contributions from the transmitted channel
and reflected channel
:
We define the ratio between the channels to be:
Such that one can compute the two components from:
and:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} I_{d,\mathrm{Rc}}(q_z) & = \frac{ I_d(q_{z}) - |Tc|^2 I_{d,\mathrm{Tc}}(q_z) }{|Rc|^2} \\ & = \frac{ I_d(q_{z}) }{|Rc|^2} - \frac{|Tc|^2}{|Rc|^2} I_{d,\mathrm{Tc}}(q_z) \end{align} }
or: