Example:Particle spacing from peak position
Consider the case of trying to measure the particle-particle spacing from the q-value of a particular peak. The interpretation of the q value of course depends upon the packing of the particles; i.e. the unit cell. Consider a cubic unit cell (SC, BCC, FCC). Note that in general:
Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q=2 \pi / d} , and since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a=b=c} , the realspace spacing of planes is:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} d_{hkl} & = \frac{a}{\sqrt{ h^2 + k^2 + l^2 }} \end{alignat} }
BCC 110
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{alignedat}{2}d_{hkl}&={\frac {a}{\sqrt {1^{2}+1^{2}+0^{2}}}}\\&={\frac {a}{\sqrt {2}}}\end{alignedat}}}