|
|
| Line 109: |
Line 109: |
| | & + 2 \times T_iR_iR_f^2 F_{-1}F_{-2} | | & + 2 \times T_iR_iR_f^2 F_{-1}F_{-2} |
| | + 2 \times R_i^2T_fR_f F_{-1}F_{+2} | | + 2 \times R_i^2T_fR_f F_{-1}F_{+2} |
| | + | \end{align} |
| | + | </math> |
| | + | |
| | + | ==Breaking into components== |
| | + | The experimental data <math>I_d(q_z)</math> can be broken into contributions from the transmitted channel <math>I_{Tc}(qz)</math> and reflected channel <math>I_{Rc}(qz)</math>: |
| | + | |
| | + | <math> |
| | + | \begin{align} |
| | + | I_d(q_{z}) |
| | + | & = [ T_i^2T_f^2 + R_i^2 + R_f^2 ] I_{Tc}(q_z) + [ T_i^2 R_f^2 + R_i^2 + T_f^2 ] I_{Rc}(q_z) \\ |
| | + | & = |Tc|^2 I_{Tc}(q_z) + |Rc|^2 I_{Rc}(q_z) \\ |
| | + | \end{align} |
| | + | </math> |
| | + | |
| | + | We define the ratio between the channels to be: |
| | + | <math> |
| | + | \begin{align} |
| | + | w |
| | + | & = \frac{ I_{Tc}(q_z) }{ I_{Tc}(q_z) | I_{Rc}(q_z) } |
| | \end{align} | | \end{align} |
| | </math> | | </math> |
Revision as of 11:30, 12 March 2018
DWBA Equation in thin film
Using the notation Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T_i = T(\alpha_i)}
for compactness, the DWBA equation inside a thin film can be written:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} I_d(q_{z}) & = | T_i T_f F(+Q_{z1}) + T_i R_f F(-Q_{z2}) + R_i T_f F(+Q_{z2}) + R_i R_f F(-Q_{z1}) | ^{2} \\ \end{align} }
Expansion
Terms
If one expands the Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |...|^2}
of the DWBA, one obtains 16 terms:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{matrix} & (T_i T_f) & (T_i R_f) & (R_i T_f) & (R_i R_f) \\ (T_i T_f) & T_i^2T_f^2 & T_i^2 T_f R_f & T_iR_iT_f^2 & T_iR_iT_fR_f \\ (T_i R_f) & T_i^2T_fR_f & T_i^2R_f^2 & T_iR_iT_fR_f & T_iR_iR_f^2 \\ (R_i T_f) & T_iR_iT_f^2 & T_iR_iT_fR_f & R_i^2T_f^2 & R_i^2T_fR_f \\ (R_i R_f) & T_iR_iT_fR_f & T_iR_iR_f^2 & R_i^2T_fR_f & R_i^2R_f^2 \\ \end{matrix} }
Equation
The equation can thus be expanded as:
Simplification
We can rearrange to:
We can rewrite in a more compact form using the notation Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T_i = T(\alpha_i)}
and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F_{+1} = F(+Q_{z1})}
:
Breaking into components
The experimental data
can be broken into contributions from the transmitted channel Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle I_{Tc}(qz)}
and reflected channel Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle I_{Rc}(qz)}
:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} I_d(q_{z}) & = [ T_i^2T_f^2 + R_i^2 + R_f^2 ] I_{Tc}(q_z) + [ T_i^2 R_f^2 + R_i^2 + T_f^2 ] I_{Rc}(q_z) \\ & = |Tc|^2 I_{Tc}(q_z) + |Rc|^2 I_{Rc}(q_z) \\ \end{align} }
We define the ratio between the channels to be:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} w & = \frac{ I_{Tc}(q_z) }{ I_{Tc}(q_z) | I_{Rc}(q_z) } \end{align} }