Difference between revisions of "Talk:DWBA"

From GISAXS
Jump to: navigation, search
(Simplification)
(Simplification)
Line 95: Line 95:
  
  
 +
\end{align}
 +
</math>
 +
 +
We can rewrite in a more compact form using the notation <math>T_i = T(\alpha_i)</math> and <math>F_{+1} = F(+Q_{z1})</math>:
 +
<math>
 +
\begin{align}
 +
I_d(q_{z})
 +
= \,\, & T_i^2 T_f^2 | F_{+1} |^2 + T_i^2 R_f^2 | F_{-2} |^2 + R_i^2 T_f^2 | F_{+2} |^2 + R_i^2 R_f^2 | F_{-1} |^2 \\
 +
        & + 2 \times T_i^2T_fR_f F_{+1}F_{-2}
 +
          + 2 \times T_iR_iT_f^2 F_{+1}F_{-2} \\
 +
        & + 2 \times T_i R_i T_f R_f [ F_{+1}F_{-1} + F_{+2}F_{-2} ]  \\
 +
        & + 2 \times T_iR_iR_f^2 F_{-1}F_{-2}
 +
          + 2 \times R_i^2T_fR_f F_{-1}F_{+2}
 
\end{align}
 
\end{align}
 
</math>
 
</math>

Revision as of 09:00, 7 March 2018

DWBA Equation in thin film

Using the notation Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T_i = T(\alpha_i)} for compactness, the DWBA equation inside a thin film can be written:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} I_d(q_{z}) & = | T_i T_f F(+Q_{z1}) + T_i R_f F(-Q_{z2}) + R_i T_f F(+Q_{z2}) + R_i R_f F(-Q_{z1}) | ^{2} \\ \end{align} }

Expansion

Terms

If one expands the Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |...|^2} of the DWBA, one obtains 16 terms:

Equation

The equation can thus be expanded as:

Simplification

We can rearrange to:


Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}I_{d}(q_{z})=\,\,&T_{i}^{2}T_{f}^{2}|F(+Q_{z1})|^{2}+T_{i}^{2}R_{f}^{2}|F(-Q_{z2})|^{2}+R_{i}^{2}T_{f}^{2}|F(+Q_{z2})|^{2}+R_{i}^{2}R_{f}^{2}|F(-Q_{z1})|^{2}\\&+T_{i}^{2}T_{f}R_{f}F(+Q_{z1})F(-Q_{z2})\\&+T_{i}R_{i}T_{f}^{2}F(+Q_{z1})F(+Q_{z2})+T_{i}R_{i}T_{f}R_{f}F(+Q_{z1})F(-Q_{z1})\\&+T_{i}^{2}T_{f}R_{f}F(+Q_{z1})F(-Q_{z2})\\&+T_{i}R_{i}T_{f}R_{f}F(+Q_{z2})F(-Q_{z2})+T_{i}R_{i}R_{f}^{2}F(-Q_{z1})F(-Q_{z2})\\&+T_{i}R_{i}T_{f}^{2}F(+Q_{z1})F(+Q_{z2})\\&+T_{i}R_{i}T_{f}R_{f}F(+Q_{z2})F(-Q_{z2})+R_{i}^{2}T_{f}R_{f}F(-Q_{z1})F(+Q_{z2})\\&+T_{i}R_{i}T_{f}R_{f}F(+Q_{z1})F(-Q_{z1})\\&+T_{i}R_{i}R_{f}^{2}F(-Q_{z1})F(-Q_{z2})+R_{i}^{2}T_{f}R_{f}F(-Q_{z1})F(+Q_{z2})\\=\,\,&T_{i}^{2}T_{f}^{2}|F(+Q_{z1})|^{2}+T_{i}^{2}R_{f}^{2}|F(-Q_{z2})|^{2}+R_{i}^{2}T_{f}^{2}|F(+Q_{z2})|^{2}+R_{i}^{2}R_{f}^{2}|F(-Q_{z1})|^{2}\\&+2\times T_{i}^{2}T_{f}R_{f}F(+Q_{z1})F(-Q_{z2})\\&+2\times T_{i}R_{i}T_{f}^{2}F(+Q_{z1})F(-Q_{z2})\\&+2\times T_{i}R_{i}T_{f}R_{f}[F(+Q_{z1})F(-Q_{z1})+F(+Q_{z2})F(-Q_{z2})]\\&+2\times T_{i}R_{i}R_{f}^{2}F(-Q_{z1})F(-Q_{z2})\\&+2\times R_{i}^{2}T_{f}R_{f}xF(-Q_{z1})F(+Q_{z2})\\=\,\,&T_{i}^{2}T_{f}^{2}|F(+Q_{z1})|^{2}+T_{i}^{2}R_{f}^{2}|F(-Q_{z2})|^{2}+R_{i}^{2}T_{f}^{2}|F(+Q_{z2})|^{2}+R_{i}^{2}R_{f}^{2}|F(-Q_{z1})|^{2}\\&+2\times T_{i}^{2}T_{f}R_{f}F(+Q_{z1})F(-Q_{z2})+2\times T_{i}R_{i}T_{f}^{2}F(+Q_{z1})F(-Q_{z2})\\&+2\times T_{i}R_{i}T_{f}R_{f}[F(+Q_{z1})F(-Q_{z1})+F(+Q_{z2})F(-Q_{z2})]\\&+2\times T_{i}R_{i}R_{f}^{2}F(-Q_{z1})F(-Q_{z2})+2\times R_{i}^{2}T_{f}R_{f}xF(-Q_{z1})F(+Q_{z2})\\\end{aligned}}}

We can rewrite in a more compact form using the notation and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F_{+1} = F(+Q_{z1})} : Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}I_{d}(q_{z})=\,\,&T_{i}^{2}T_{f}^{2}|F_{+1}|^{2}+T_{i}^{2}R_{f}^{2}|F_{-2}|^{2}+R_{i}^{2}T_{f}^{2}|F_{+2}|^{2}+R_{i}^{2}R_{f}^{2}|F_{-1}|^{2}\\&+2\times T_{i}^{2}T_{f}R_{f}F_{+1}F_{-2}+2\times T_{i}R_{i}T_{f}^{2}F_{+1}F_{-2}\\&+2\times T_{i}R_{i}T_{f}R_{f}[F_{+1}F_{-1}+F_{+2}F_{-2}]\\&+2\times T_{i}R_{i}R_{f}^{2}F_{-1}F_{-2}+2\times R_{i}^{2}T_{f}R_{f}F_{-1}F_{+2}\end{aligned}}}