|
|
| Line 158: |
Line 158: |
| | | | |
| | & \begin{align} | | & \begin{align} |
| − | = \,\, & |T_i T_f|^2 | F_{+1} |^2 && + |T_i|^2 T_f R_f F_{+1}F_{-2}^* \\ | + | = \,\, & |T_i T_f|^2 | F_{+1} |^2 && + |T_i|^2 T_f R_f^* F_{+1}F_{-2}^* \\ |
| − | & && + T_i R_i |T_f|^2 F_{+1}F_{+2}^* + T_i R_i T_f R_f F_{+1} F_{-1}^* \\ | + | & && + T_i R_i^* |T_f|^2 F_{+1}F_{+2}^* + T_i R_i^* T_f R_f^* F_{+1} F_{-1}^* \\ |
| | | | |
| − | & + |T_i R_f|^2 | F_{-2} |^2 && + |T_i|^2T_fR_f F_{+1}^* F_{-2} \\ | + | & + |T_i R_f|^2 | F_{-2} |^2 && + |T_i|^2T_f^*R_f F_{+1}^* F_{-2} \\ |
| − | & && + T_i R_i T_f R_f F_{+2}^*F_{-2} + T_i R_i |R_f|^2 F_{-1}^* F_{-2} \\ | + | & && + T_i R_i^* T_f^* R_f F_{+2}^*F_{-2} + T_i R_i^* |R_f|^2 F_{-1}^* F_{-2} \\ |
| | | | |
| − | & + |R_i T_f|^2 | F_{+2} |^2 && + T_i R_i |T_f|^2 F_{+1}^* F_{+2} \\ | + | & + |R_i T_f|^2 | F_{+2} |^2 && + T_i^* R_i |T_f|^2 F_{+1}^* F_{+2} \\ |
| − | & && + T_i R_i T_f R_f F_{+2}^*F_{-2} + |R_i|^2 T_f R_f F_{-1}^* F_{+2} \\ | + | & && + T_i^* R_i T_f R_f^* F_{+2}^*F_{-2} + |R_i|^2 T_f R_f^* F_{-1}^* F_{+2} \\ |
| | | | |
| − | & + |R_i R_f|^2 | F_{-1} |^2 && + T_i R_i T_f R_f F_{+1}^* F_{-1} \\ | + | & + |R_i R_f|^2 | F_{-1} |^2 && + T_i^* R_i T_f^* R_f F_{+1}^* F_{-1} \\ |
| − | & && + T_i R_i |R_f|^2 F_{-1}F_{-2}^* + |R_i|^2 T_f R_f F_{-1} F_{+2}^* \\ | + | & && + T_i^* R_i |R_f|^2 F_{-1}F_{-2}^* + |R_i|^2 T_f^* R_f F_{-1} F_{+2}^* \\ |
| | | | |
| | \end{align} \\ | | \end{align} \\ |
DWBA Equation in thin film
Using the notation
for compactness, the DWBA equation inside a thin film can be written:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} I_d(q_{z}) & = | T_i T_f F(+Q_{z1}) + T_i R_f F(-Q_{z2}) + R_i T_f F(+Q_{z2}) + R_i R_f F(-Q_{z1}) | ^{2} \\ \end{align} }
Expansion (incorrect)
WARNING: This incorrectly ignores the complex components.
Terms
If one expands the Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |...|^2}
of the DWBA, one obtains 16 terms:
Equation
The equation can thus be expanded as:
Simplification
We can rearrange to:
We can rewrite in a more compact form using the notation
and
:
Expansion
Terms
If one expands the
of the DWBA, one obtains 16 terms:
Equation
We take advantage of a more compact form using the notation
and
. The DWBA equation can thus be expanded as:
Simplification
We can rearrange to:
Breaking into components
The experimental data
can be broken into contributions from the transmitted channel
and reflected channel Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle I_{d,Rc}(qz)}
:
We define the ratio between the channels to be:
Such that one can compute the two components from:
and:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} I_{d,Rc}(q_z) & = \frac{ I_d(q_{z}) - |Tc|^2 I_{d,Tc}(q_z) }{|Rc|^2} \end{align} }