Difference between revisions of "Talk:DWBA"

From GISAXS
Jump to: navigation, search
(Terms)
(Terms)
Line 123: Line 123:
 
           &  (T_i^* T_f^*)        &  (T_i^* R_f^*)      &  (R_i^* T_f^*)    &  (R_i^* R_f^*)    \\
 
           &  (T_i^* T_f^*)        &  (T_i^* R_f^*)      &  (R_i^* T_f^*)    &  (R_i^* R_f^*)    \\
 
(T_i T_f)  &  T_i T_i^* T_f T_f^*  &  T_i T_i^* T_f R_f^*  & T_i R_i^* T_f T_f^*    &  T_i R_i^* T_f R_f^*  \\
 
(T_i T_f)  &  T_i T_i^* T_f T_f^*  &  T_i T_i^* T_f R_f^*  & T_i R_i^* T_f T_f^*    &  T_i R_i^* T_f R_f^*  \\
(T_i R_f)  &  T_i T_i^* T_f^* R_f  &  T_i Ti^* R_f R_f^*    &  T_i R_i^* T_f^* R_f  &  T_i R_i^* R_f R_f^*  \\
+
(T_i R_f)  &  T_i T_i^* T_f^* R_f  &  T_i T_i^* R_f R_f^*    &  T_i R_i^* T_f^* R_f  &  T_i R_i^* R_f R_f^*  \\
 
(R_i T_f)  &  T_i^* R_i T_f T_f^*  &  T_i^* R_i T_f R_f^*  &  R_i R_i^* T_f T_f^*    &  R_i R_i^* T_f R_f^*  \\
 
(R_i T_f)  &  T_i^* R_i T_f T_f^*  &  T_i^* R_i T_f R_f^*  &  R_i R_i^* T_f T_f^*    &  R_i R_i^* T_f R_f^*  \\
 
(R_i R_f)  &  T_i^* R_i T_f^* R_f  &  T_i^* R_i R_f R_f^*    &  R_i R_i^* T_f^* R_f  &  R_i R_i^* R_f R_f^*    \\
 
(R_i R_f)  &  T_i^* R_i T_f^* R_f  &  T_i^* R_i R_f R_f^*    &  R_i R_i^* T_f^* R_f  &  R_i R_i^* R_f R_f^*    \\

Revision as of 17:36, 12 March 2018

DWBA Equation in thin film

Using the notation Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T_i = T(\alpha_i)} for compactness, the DWBA equation inside a thin film can be written:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} I_d(q_{z}) & = | T_i T_f F(+Q_{z1}) + T_i R_f F(-Q_{z2}) + R_i T_f F(+Q_{z2}) + R_i R_f F(-Q_{z1}) | ^{2} \\ \end{align} }

Expansion (incorrect)

WARNING: This incorrectly ignores the complex components.

Terms

If one expands the of the DWBA, one obtains 16 terms:

Equation

The equation can thus be expanded as:

Simplification

We can rearrange to:


We can rewrite in a more compact form using the notation and :

Expansion

Terms

If one expands the of the DWBA, one obtains 16 terms:

Breaking into components

The experimental data Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle I_d(q_z)} can be broken into contributions from the transmitted channel and reflected channel :

We define the ratio between the channels to be:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} w & = \frac{ I_{Tc}(q_z) }{ I_{Tc}(q_z) + I_{Rc}(q_z) } \end{align} }

Such that one can compute the two components from:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} I_d(q_{z}) & = |Tc|^2 ( I_{Tc}(q_z) ) + |Rc|^2 ( I_{Rc}(q_z) ) \\ I_d(q_{z}) & = |Tc|^2 ( I_{Tc}(q_z) ) + |Rc|^2 \left ( \frac{ I_{Tc}(q_z) - w I_{Tc}(q_z) }{w} \right ) \\ I_d(q_{z}) & = I_{Tc}(q_z) \times \left ( |Tc|^2 + |Rc|^2 \frac{ 1}{w} - |Rc|^2 \frac{w }{w} \right ) \\ I_{Tc}(q_z) & = \frac{ I_d(q_{z}) }{ |Tc|^2 + \frac{ |Rc|^2 }{w} - |Rc|^2 } \\ \end{align} }

and:


Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} I_{Rc}(q_z) & = \frac{ I_d(q_{z}) - |Tc|^2 I_{Tc}(q_z) }{|Rc|^2} \end{align} }