Difference between revisions of "Talk:DWBA"

From GISAXS
Jump to: navigation, search
(Expansion)
(Terms)
Line 17: Line 17:
  
 
<math>
 
<math>
      \begin{block}{c(ccc)}
+
 
        H & .8 & .2 & .0 \\
+
\begin{matrix}
        Y & .3 & .4 & .3 \\
+
          &  (T_i T_f)    &  (T_i R_f)      &  (R_i T_f)    &  (R_i R_f)    \\
        D & .2 & .1 & .7 \\
+
(T_i T_f) &  T_i^2T_f^2    &  T_i^2 T_f R_f  & T_iR_iT_f^2    &  T_iR_iT_fR_f  \\
      \end{block}
+
(T_i R_f)  & T_i^2T_fR_f  & T_i^2R_f^2     & T_iR_iT_fR_f  &  T_iR_iR_f^2  \\
 +
(R_i T_f)  & T_iR_iT_f^2  & T_iR_iT_fR_f  &  R_i^2T_f^2    & R_i^2T_fR_f  \\
 +
(R_i R_f)  & T_iR_iT_fR_f  &  T_iR_iR_f^2   & R_i^2T_fR_f  & R_i^2R_f^2    \\
 +
\end{matrix}
 +
 
 
</math>
 
</math>
  

Revision as of 17:21, 6 March 2018

DWBA Equation in thin film

Using the notation Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T_i = T(\alpha_i)} for compactness, the DWBA equation inside a thin film can be written:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} I_d(q_{z}) & = | T_i T_f F(+Q_{z1}) + T_i R_f F(-Q_{z2}) + R_i T_f F(+Q_{z2}) + R_i R_f F(-Q_{z1}) | ^{2} \\ \end{align} }

Expansion

Terms

If one expands the Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |...|^2} of the DWBA, one obtains 16 terms:

Equation

The equation can thus be written as:

Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}I_{d}(q_{z})&=|T_{i}T_{f}F(+Q_{z1})+T_{i}R_{f}F(-Q_{z2})+R_{i}T_{f}F(+Q_{z2})+R_{i}R_{f}F(-Q_{z1})|^{2}\\&{\begin{aligned}=\,\,&T_{i}^{2}T_{f}^{2}|F(+Q_{z1})|^{2}&&+T_{i}^{2}T_{f}R_{f}F(+Q_{z1})F(-Q_{z2})\\&&&+T_{i}R_{i}T_{f}R_{f}F(+Q_{z1})F(+Q_{z2})+T_{i}R_{i}T_{f}R_{f}F(+Q_{z1})F(-Q_{z1})\\&+T_{i}^{2}R_{f}^{2}|F(-Q_{z2})|^{2}&&+T_{i}^{2}T_{f}R_{f}F(+Q_{z1})F(-Q_{z2})\\&&&+T_{i}R_{i}T_{f}R_{f}F(+Q_{z2})F(-Q_{z2})+T_{i}R_{i}R_{f}^{2}F(-Q_{z1})F(-Q_{z2})\\&+R_{i}^{2}T_{f}^{2}|F(+Q_{z2})|^{2}&&+T_{i}R_{i}T_{f}^{2}F(+Q_{z1})F(+Q_{z2})\\&&&+T_{i}R_{i}T_{f}R_{f}F(+Q_{z2})F(-Q_{z2})+R_{i}^{2}T_{f}R_{f}F(-Q_{z1})F(+Q_{z2})\\&+R_{i}^{2}R_{f}^{2}|F(-Q_{z1})|^{2}&&+T_{i}R_{i}T_{f}R_{f}F(+Q_{z1})F(-Q_{z1})\\&&&+T_{i}R_{i}R_{f}^{2}F(-Q_{z1})F(-Q_{z2})+R_{i}^{2}T_{f}R_{f}F(-Q_{z1})F(+Q_{z2})\\\end{aligned}}\\\end{aligned}}}

Simplification

We can rearrange to:


Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}I_{d}(q_{z})=\,\,&T_{i}^{2}T_{f}^{2}|F(+Q_{z1})|^{2}+T_{i}^{2}R_{f}^{2}|F(-Q_{z2})|^{2}+R_{i}^{2}T_{f}^{2}|F(+Q_{z2})|^{2}+R_{i}^{2}R_{f}^{2}|F(-Q_{z1})|^{2}\\&+T_{i}^{2}T_{f}R_{f}F(+Q_{z1})F(-Q_{z2})\\&+T_{i}R_{i}T_{f}R_{f}F(+Q_{z1})F(+Q_{z2})+T_{i}R_{i}T_{f}R_{f}F(+Q_{z1})F(-Q_{z1})\\&+T_{i}^{2}T_{f}R_{f}F(+Q_{z1})F(-Q_{z2})\\&+T_{i}R_{i}T_{f}R_{f}F(+Q_{z2})F(-Q_{z2})+T_{i}R_{i}R_{f}^{2}F(-Q_{z1})F(-Q_{z2})\\&+T_{i}R_{i}T_{f}^{2}F(+Q_{z1})F(+Q_{z2})\\&+T_{i}R_{i}T_{f}R_{f}F(+Q_{z2})F(-Q_{z2})+R_{i}^{2}T_{f}R_{f}F(-Q_{z1})F(+Q_{z2})\\&+T_{i}R_{i}T_{f}R_{f}F(+Q_{z1})F(-Q_{z1})\\&+T_{i}R_{i}R_{f}^{2}F(-Q_{z1})F(-Q_{z2})+R_{i}^{2}T_{f}R_{f}F(-Q_{z1})F(+Q_{z2})\\=\,\,&T_{i}^{2}T_{f}^{2}|F(+Q_{z1})|^{2}+T_{i}^{2}R_{f}^{2}|F(-Q_{z2})|^{2}+R_{i}^{2}T_{f}^{2}|F(+Q_{z2})|^{2}+R_{i}^{2}R_{f}^{2}|F(-Q_{z1})|^{2}\\&+2\times T_{i}^{2}T_{f}R_{f}F(+Q_{z1})F(-Q_{z2})\\&+T_{i}R_{i}T_{f}R_{f}[2F(+Q_{z1})F(-Q_{z1})+F(+Q_{z1})F(+Q_{z2})+2F(+Q_{z2})F(-Q_{z2})]\\&+2\times T_{i}R_{i}R_{f}^{2}F(-Q_{z1})F(-Q_{z2})\\&+T_{i}R_{i}T_{f}^{2}F(+Q_{z1})F(+Q_{z2})\\&+2\times R_{i}^{2}T_{f}R_{f}F(-Q_{z1})F(+Q_{z2})\\\end{aligned}}}