Difference between revisions of "Talk:Geometry:TSAXS 3D"
KevinYager (talk | contribs) (→Working results 1) |
KevinYager (talk | contribs) (→Working results 1) |
||
| Line 45: | Line 45: | ||
</math> | </math> | ||
| − | + | As a check: | |
| − | |||
====Working results 2 (contains errors)==== | ====Working results 2 (contains errors)==== | ||
Revision as of 11:18, 13 January 2016
Working results 1
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} \mathbf{q} & = \frac{2 \pi}{\lambda} \begin{bmatrix} \sin \theta_f \cos \alpha_f \\ \cos \theta_f \cos \alpha_f - 1 \\ \sin \alpha_f \end{bmatrix} \\ & = \frac{2 \pi}{\lambda} \begin{bmatrix} \sin \left( \arctan\left[ \frac{x}{d} \right] \right) \cos \left( \arctan \left[ \frac{z }{d / \cos \theta_f} \right] \right) \\ \cos \left( \arctan\left[ \frac{x}{d} \right] \right) \cos \left( \arctan \left[ \frac{z }{d / \cos \theta_f} \right] \right) - 1 \\ \sin \left( \arctan \left[ \frac{z }{d / \cos \theta_f} \right] \right) \end{bmatrix} \\ & = \frac{2 \pi}{\lambda} \begin{bmatrix} \frac{x/d}{\sqrt{1+\left(x/d \right)^2}} \frac{d}{\sqrt{d^2+z^2\cos^2 \theta_f}} \\ \frac{1}{\sqrt{1+\left(x/d \right)^2}} \frac{d}{\sqrt{d^2+z^2\cos^2 \theta_f}} - 1 \\ \frac{z \cos \theta_f}{\sqrt{d^2+z^2 \cos^2 \theta_f }} \end{bmatrix} \\ & = \frac{2 \pi}{\lambda} \begin{bmatrix} \frac{x d}{\sqrt{d^2+x^2 }} \frac{1}{\sqrt{d^2+z^2\cos^2 \theta_f}} \\ \frac{d}{\sqrt{d^2+x^2}} \frac{d}{\sqrt{d^2+z^2\cos^2 \theta_f}} - 1 \\ \frac{z \cos \theta_f}{\sqrt{d^2+z^2 \cos^2 \theta_f }} \end{bmatrix} \\ \end{alignat} }
Note that , and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \cos^2 \theta_f = d^4/(d^2+x^2)} so:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} \frac{1}{\sqrt{d^2+z^2 \cos^2 \theta_f }} & = \frac{1}{\sqrt{d^2+z^2 \left( d^4/(d^2+x^2) \right) }} \\ & = \frac{1}{\sqrt{d^2} \sqrt{((d^2+x^2)+z^2 d^2)/(d^2+x^2) }} \\ & = \frac{\sqrt{d^2+x^2}}{d \sqrt{d^2 + x^2 + z^2 d^2 }} \\ \end{alignat} }
And:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} \mathbf{q} & = \frac{2 \pi}{\lambda} \begin{bmatrix} \frac{x d}{\sqrt{d^2+x^2 }} \frac{\sqrt{d^2+x^2}}{d \sqrt{d^2 + x^2 + z^2 d^2 }} \\ \frac{d}{\sqrt{d^2+x^2}} \frac{d \sqrt{d^2+x^2}}{d \sqrt{d^2 + x^2 + z^2 d^2 }} - 1 \\ \frac{z \left( d^2/\sqrt{d^2+x^2} \right) \sqrt{d^2+x^2}}{d \sqrt{d^2 + x^2 + z^2 d^2 }} \end{bmatrix} \\ & = \frac{2 \pi}{\lambda} \begin{bmatrix} \frac{x}{ \sqrt{x^2 + d^2 + z^2 d^2 }} \\ \frac{d }{\sqrt{x^2 + d^2 + z^2 d^2 }} - 1 \\ \frac{z d }{\sqrt{x^2 + d^2 + z^2 d^2 }} \end{bmatrix} \\ \end{alignat} }
As a check:
Working results 2 (contains errors)
As a check of these results, consider:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} q & = \sqrt{ q_x^2 + q_y^2 + q_z^2 } \\ & = \frac{2 \pi}{\lambda} \sqrt{ \sin^2 \theta_f \cos^2 \alpha_f + \left ( \cos \theta_f \cos \alpha_f - 1 \right )^2 + \sin^2 \alpha_f } \\ \left( \frac{q}{k} \right)^2 & = (\sin \theta_f)^2 (\cos \alpha_f)^2 + \left ( \cos \theta_f \cos \alpha_f - 1 \right )^2 + (\sin \alpha_f)^2 \\ & = \left(\frac{x/d}{\sqrt{1+(x/d)^2}} \right)^2 \left(\cos \alpha_f \right)^2 + \left ( \cos \theta_f \cos \alpha_f - 1 \right )^2 + \left( \frac{z \cos \theta_f /d }{\sqrt{1+(z \cos \theta_f /d)^2}} \right)^2 \\ & = \left(\frac{x}{\sqrt{d^2+x^2}} \right)^2 \left(\cos \alpha_f \right)^2 + \left ( \cos \theta_f \cos \alpha_f - 1 \right )^2 + \left( \frac{z \cos \theta_f }{\sqrt{d^2+z^2 \cos^2 \theta_f }} \right)^2 \\ & = \frac{x^2}{d^2+x^2} \left(\cos \alpha_f \right)^2 + \left ( \cos \theta_f \cos \alpha_f - 1 \right )^2 + \frac{z^2 \cos^2 \theta_f }{d^2+z^2 \cos^2 \theta_f } \\ & = \frac{x^2}{d^2+x^2} \frac{d^4}{d^2+z^2 \cos^2 \theta_f} + \left ( \cos \theta_f \frac{d^2}{\sqrt{d^2+z^2 \cos^2 \theta_f}} - 1 \right )^2 + \frac{z^2 \cos^2 \theta_f }{d^2+z^2 \cos^2 \theta_f } \end{alignat} }
Where we used:
And, we further note that:
Continuing: