Difference between revisions of "Talk:Scattering"

From GISAXS
Jump to: navigation, search
(Check)
(cont)
Line 73: Line 73:
 
     & = d^4\frac{x^2+z^2}{(d^2+x^2)(d^2+z^2 \cos^2 \theta_f)}  + \left ( \frac{d^4}{\sqrt{(d^2+x^2)(d^2+z^2 \cos^2 \theta_f)}} - 1 \right )^2 \\
 
     & = d^4\frac{x^2+z^2}{(d^2+x^2)(d^2+z^2 \cos^2 \theta_f)}  + \left ( \frac{d^4}{\sqrt{(d^2+x^2)(d^2+z^2 \cos^2 \theta_f)}} - 1 \right )^2 \\
 
     & = \frac{d^4x^2+d^4z^2}{d^4+d^2x^2+d^4z^2}  + \left ( \frac{d^4}{\sqrt{d^4+d^2x^2+d^4z^2}} - 1 \right )^2 \\
 
     & = \frac{d^4x^2+d^4z^2}{d^4+d^2x^2+d^4z^2}  + \left ( \frac{d^4}{\sqrt{d^4+d^2x^2+d^4z^2}} - 1 \right )^2 \\
 +
    & = \frac{d^2x^2+d^2z^2}{d^2+x^2+d^2z^2}  + \left ( \frac{d^8}{d^4+d^2x^2+d^4z^2} -2 \frac{d^4}{\sqrt{d^4+d^2x^2+d^4z^2}} + 1 \right ) \\
 +
    & = \frac{d^2x^2+d^2z^2}{d^2+x^2+d^2z^2}  + \frac{d^6}{d^2+x^2+d^2z^2} -2 \frac{d^3}{\sqrt{d^2+x^2+d^2z^2}} + 1 \\
 
     & = ? \\
 
     & = ? \\
 
     & = ? \\
 
     & = ? \\

Revision as of 18:53, 29 December 2015

TSAXS 3D

The q-vector in fact has three components:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{q} = \begin{bmatrix} q_x & q_y & q_z \end{bmatrix} }

Consider that the x-ray beam points along +y, so that on the detector, the horizontal is x, and the vertical is z. We assume that the x-ray beam hits the flat 2D area detector at 90° at detector (pixel) position Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \scriptstyle (x,z) } . The scattering angles are then:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} \theta_f & = \arctan\left[ \frac{x}{d} \right] \\ \alpha_f ^\prime & = \arctan\left[ \frac{z}{d} \right] \\ \alpha_f & = \arctan \left[ \frac{z }{d / \cos \theta_f} \right] \end{alignat} }

where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \scriptstyle d} is the sample-detector distance, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \scriptstyle \alpha_f ^{\prime} } is the out-of-plane component (angle w.r.t. to y-axis, rotation about x-axis), and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \scriptstyle \theta_f } is the in-plane component (rotation about z-axis). The alternate angle, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \scriptstyle \alpha_f } , is the elevation angle in the plane defined by Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \scriptstyle \theta_f } . Also note that the full scattering angle is:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} 2 \theta_s = \Theta & = \arctan\left[ \frac{ \sqrt{x^2 + z^2}}{d} \right] \\ & = \arctan\left[ \frac{ \sqrt{(d \tan \theta_f)^2 + (d \tan \alpha_f^\prime )^2}}{d} \right] \\ & = \arctan\left[ \sqrt{\tan^2 \theta_f + \tan^2 \alpha_f^\prime } \right] \\ & = \arctan\left[ \sqrt{\tan^2 \theta_f + \frac{ \tan^2 \alpha_f }{ \cos^2 \theta_f } } \right] \\ \end{alignat} }

The momentum transfer components are:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} q_x & = \frac{2 \pi}{\lambda} \sin \theta_f \cos \alpha_f \\ q_y & = \frac{2 \pi}{\lambda} \left ( \cos \theta_f \cos \alpha_f - 1 \right ) \\ q_z & = \frac{2 \pi}{\lambda} \sin \alpha_f \end{alignat} }

Check

As a check of these results, consider:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} q & = \sqrt{ q_x^2 + q_y^2 + q_z^2 } \\ & = \frac{2 \pi}{\lambda} \sqrt{ \sin^2 \theta_f \cos^2 \alpha_f + \left ( \cos \theta_f \cos \alpha_f - 1 \right )^2 + \sin^2 \alpha_f } \\ \frac{q}{k} & = \sqrt{ (\sin \theta_f)^2 (\cos \alpha_f)^2 + \left ( \cos \theta_f \cos \alpha_f - 1 \right )^2 + (\sin \alpha_f)^2 } \\ \frac{q^2}{k^2} & = \left(\frac{x/d}{\sqrt{1+(x/d)^2}} \right)^2 \left(\cos \alpha_f \right)^2 + \left ( \cos \theta_f \cos \alpha_f - 1 \right )^2 + \left( \frac{z \cos \theta_f /d }{\sqrt{1+(z \cos \theta_f /d)^2}} \right)^2 \\ & = \left(\frac{x}{\sqrt{d^2+x^2}} \right)^2 \left(\cos \alpha_f \right)^2 + \left ( \cos \theta_f \cos \alpha_f - 1 \right )^2 + \left( \frac{z \cos \theta_f }{\sqrt{d^2+z^2 \cos^2 \theta_f }} \right)^2 \\ & = \frac{x^2}{d^2+x^2} \left(\cos \alpha_f \right)^2 + \left ( \cos \theta_f \cos \alpha_f - 1 \right )^2 + \frac{z^2 \cos^2 \theta_f }{d^2+z^2 \cos^2 \theta_f } \\ & = \frac{x^2}{d^2+x^2} \frac{d^4}{d^2+z^2 \cos^2 \theta_f} + \left ( \cos \theta_f \frac{d^2}{\sqrt{d^2+z^2 \cos^2 \theta_f}} - 1 \right )^2 + \frac{z^2 \cos^2 \theta_f }{d^2+z^2 \cos^2 \theta_f } \end{alignat} }

Where we used:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} \sin( \arctan[u]) & = \frac{u}{\sqrt{1+u^2}} \\ \sin \theta_f & = \sin( \arctan [x/d] ) \\ & = \frac{x/d}{\sqrt{1 + (x/d)^2}} \\ & = \frac{x}{\sqrt{d^2+x^2}} \end{alignat} }

And, we further note that:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} \cos( \arctan[u]) & = \frac{1}{\sqrt{1+u^2}} \\ \cos \theta_f & = \frac{1}{\sqrt{1 + (x/d)^2}} \\ & = \frac{d^2}{\sqrt{d^2+x^2}} \end{alignat} }

cont

Continuing:

Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{alignedat}{2}{\frac {q^{2}}{k^{2}}}&={\frac {x^{2}}{d^{2}+x^{2}}}{\frac {d^{4}}{d^{2}+z^{2}\cos ^{2}\theta _{f}}}+\left({\frac {d^{2}}{\sqrt {d^{2}+x^{2}}}}{\frac {d^{2}}{\sqrt {d^{2}+z^{2}\cos ^{2}\theta _{f}}}}-1\right)^{2}+{\frac {z^{2}}{d^{2}+z^{2}\cos ^{2}\theta _{f}}}{\frac {d^{4}}{d^{2}+x^{2}}}\\&=d^{4}{\frac {x^{2}+z^{2}}{(d^{2}+x^{2})(d^{2}+z^{2}\cos ^{2}\theta _{f})}}+\left({\frac {d^{4}}{\sqrt {(d^{2}+x^{2})(d^{2}+z^{2}\cos ^{2}\theta _{f})}}}-1\right)^{2}\\&={\frac {d^{4}x^{2}+d^{4}z^{2}}{d^{4}+d^{2}x^{2}+d^{4}z^{2}}}+\left({\frac {d^{4}}{\sqrt {d^{4}+d^{2}x^{2}+d^{4}z^{2}}}}-1\right)^{2}\\&={\frac {d^{2}x^{2}+d^{2}z^{2}}{d^{2}+x^{2}+d^{2}z^{2}}}+\left({\frac {d^{8}}{d^{4}+d^{2}x^{2}+d^{4}z^{2}}}-2{\frac {d^{4}}{\sqrt {d^{4}+d^{2}x^{2}+d^{4}z^{2}}}}+1\right)\\&={\frac {d^{2}x^{2}+d^{2}z^{2}}{d^{2}+x^{2}+d^{2}z^{2}}}+{\frac {d^{6}}{d^{2}+x^{2}+d^{2}z^{2}}}-2{\frac {d^{3}}{\sqrt {d^{2}+x^{2}+d^{2}z^{2}}}}+1\\&=?\\&=?\\&=?\\&=?\\&=?\\&={\frac {x^{2}+z^{2}}{d^{2}+x^{2}+z^{2}}}\\{\frac {q}{k}}&={\sqrt {\frac {x^{2}+z^{2}}{d^{2}+x^{2}+z^{2}}}}\\&={\frac {\sqrt {x^{2}+z^{2}}}{\sqrt {d^{2}+x^{2}+z^{2}}}}\\&={\frac {\left[{\sqrt {x^{2}+z^{2}}}/d\right]}{\sqrt {1+\left[{\sqrt {x^{2}+z^{2}}}/d\right]^{2}}}}\\&=\sin \left(\arctan \left[{\frac {\sqrt {x^{2}+z^{2}}}{d}}\right]\right)\\q&={\frac {2\pi }{\lambda }}\sin \left(2\theta _{s}\right)\end{alignedat}}}