Difference between revisions of "Science Agents"

From GISAXS
Jump to: navigation, search
(Science Foundation Models)
(Literature Discovery)
 
(36 intermediate revisions by the same user not shown)
Line 59: Line 59:
 
* 2025-08: [https://arxiv.org/abs/2508.15763 Intern-S1: A Scientific Multimodal Foundation Model]
 
* 2025-08: [https://arxiv.org/abs/2508.15763 Intern-S1: A Scientific Multimodal Foundation Model]
 
* 2025-11: [https://pubs.aip.org/aip/jcp/article/163/18/184110/3372267/A-foundation-model-for-atomistic-materials A foundation model for atomistic materials chemistry]
 
* 2025-11: [https://pubs.aip.org/aip/jcp/article/163/18/184110/3372267/A-foundation-model-for-atomistic-materials A foundation model for atomistic materials chemistry]
 +
* 2025-11: [https://arxiv.org/abs/2511.15684 Walrus: A Cross-Domain Foundation Model for Continuum Dynamics]
 +
* 2026-01: [https://www.science.org/doi/10.1126/science.ads9530 Deep contrastive learning enables genome-wide virtual screening]
  
 
===Regression (Data Fitting)===
 
===Regression (Data Fitting)===
Line 77: Line 79:
 
* [https://github.com/TheBlewish/Automated-AI-Web-Researcher-Ollama Automated-AI-Web-Researcher-Ollama]
 
* [https://github.com/TheBlewish/Automated-AI-Web-Researcher-Ollama Automated-AI-Web-Researcher-Ollama]
 
* 2025-01: [https://arxiv.org/abs/2501.05366 Search-o1: Agentic Search-Enhanced Large Reasoning Models] ([https://search-o1.github.io/ project], [https://github.com/sunnynexus/Search-o1 code])
 
* 2025-01: [https://arxiv.org/abs/2501.05366 Search-o1: Agentic Search-Enhanced Large Reasoning Models] ([https://search-o1.github.io/ project], [https://github.com/sunnynexus/Search-o1 code])
 +
* 2026-02: [https://www.nature.com/articles/s41586-025-10072-4 Synthesizing scientific literature with retrieval-augmented language models] ([https://allenai.org/blog/openscholar-nature blog])
  
 
===Commercial===
 
===Commercial===
Line 98: Line 101:
  
 
===Materials===
 
===Materials===
* 2024-12: [https://www.nature.com/articles/s41467-024-54639-7 Crystal structure generation with autoregressive large language modeling
+
* 2024-12: [https://www.nature.com/articles/s41467-024-54639-7 Crystal structure generation with autoregressive large language modeling]
 
* 2025-03: [https://arxiv.org/abs/2503.03965 All-atom Diffusion Transformers: Unified generative modelling of molecules and materials]
 
* 2025-03: [https://arxiv.org/abs/2503.03965 All-atom Diffusion Transformers: Unified generative modelling of molecules and materials]
 +
* 2022-11: [https://arxiv.org/abs/2511.19730 Training-Free Active Learning Framework in Materials Science with Large Language Models]
  
 
===Chemistry===
 
===Chemistry===
Line 127: Line 131:
 
* 2025-09: [https://www.biorxiv.org/content/10.1101/2025.09.12.675911v1 Generative design of novel bacteriophages with genome language models]
 
* 2025-09: [https://www.biorxiv.org/content/10.1101/2025.09.12.675911v1 Generative design of novel bacteriophages with genome language models]
 
* 2025-10: [https://www.science.org/doi/10.1126/science.adu8578 Strengthening nucleic acid biosecurity screening against generative protein design tools]
 
* 2025-10: [https://www.science.org/doi/10.1126/science.adu8578 Strengthening nucleic acid biosecurity screening against generative protein design tools]
 +
* 2026-01: [https://www.nature.com/articles/s41586-025-10014-0 Advancing regulatory variant effect prediction with AlphaGenome]
  
 
===Medicine===
 
===Medicine===
Line 146: Line 151:
 
* 2025-02: [https://www.biorxiv.org/content/10.1101/2025.02.06.636901v1 From Mechanistic Interpretability to Mechanistic Biology: Training, Evaluating, and Interpreting Sparse Autoencoders on Protein Language Models]
 
* 2025-02: [https://www.biorxiv.org/content/10.1101/2025.02.06.636901v1 From Mechanistic Interpretability to Mechanistic Biology: Training, Evaluating, and Interpreting Sparse Autoencoders on Protein Language Models]
 
* 2025-02: [https://www.goodfire.ai/blog/interpreting-evo-2 Interpreting Evo 2: Arc Institute's Next-Generation Genomic Foundation Model]
 
* 2025-02: [https://www.goodfire.ai/blog/interpreting-evo-2 Interpreting Evo 2: Arc Institute's Next-Generation Genomic Foundation Model]
 +
* 2026-01: [https://www.goodfire.ai/research/interpretability-for-alzheimers-detection# Using Interpretability to Identify a Novel Class of Alzheimer's Biomarkers]
  
 
===Uncertainty===
 
===Uncertainty===
Line 163: Line 169:
 
** 2024-07: [https://arxiv.org/abs/2407.09413 SPIQA: A Dataset for Multimodal Question Answering on Scientific Papers]
 
** 2024-07: [https://arxiv.org/abs/2407.09413 SPIQA: A Dataset for Multimodal Question Answering on Scientific Papers]
 
** 2024-10: [https://neurips.cc/virtual/2024/98540 FEABench: Evaluating Language Models on Real World Physics Reasoning Ability]
 
** 2024-10: [https://neurips.cc/virtual/2024/98540 FEABench: Evaluating Language Models on Real World Physics Reasoning Ability]
 +
* 2026-02: [https://edisonscientific.com/ Edison]: [https://lab-bench.ai/ LABBench 2]
  
 
=Science Agents=
 
=Science Agents=
Line 170: Line 177:
 
* 2025-07: [https://arxiv.org/abs/2507.01903 AI4Research: A Survey of Artificial Intelligence for Scientific Research]
 
* 2025-07: [https://arxiv.org/abs/2507.01903 AI4Research: A Survey of Artificial Intelligence for Scientific Research]
 
* 2025-08: [https://arxiv.org/abs/2508.14111 From AI for Science to Agentic Science: A Survey on Autonomous Scientific Discovery]
 
* 2025-08: [https://arxiv.org/abs/2508.14111 From AI for Science to Agentic Science: A Survey on Autonomous Scientific Discovery]
 +
 +
==Challenges==
 +
* 2026-01: [https://arxiv.org/abs/2601.03315 Why LLMs Aren't Scientists Yet: Lessons from Four Autonomous Research Attempts]
  
 
==Specific==
 
==Specific==
Line 186: Line 196:
 
* 2025-11: [https://arxiv.org/abs/2511.02824 Kosmos: An AI Scientist for Autonomous Discovery]
 
* 2025-11: [https://arxiv.org/abs/2511.02824 Kosmos: An AI Scientist for Autonomous Discovery]
 
* 2025-11: [https://arxiv.org/abs/2511.08151 SciAgent: A Unified Multi-Agent System for Generalistic Scientific Reasoning]
 
* 2025-11: [https://arxiv.org/abs/2511.08151 SciAgent: A Unified Multi-Agent System for Generalistic Scientific Reasoning]
 +
* 2026-02: [https://arxiv.org/abs/2601.23265 PaperBanana: Automating Academic Illustration for AI Scientists]
  
 
==Science Multi-Agent Setups==
 
==Science Multi-Agent Setups==
Line 198: Line 209:
 
** 2025-07: [https://arxiv.org/abs/2507.00964 Benchmarking the Discovery Engine] ([https://www.leap-labs.com/blog/how-we-replicated-five-peer-reviewed-papers-in-five-hours blog])
 
** 2025-07: [https://arxiv.org/abs/2507.00964 Benchmarking the Discovery Engine] ([https://www.leap-labs.com/blog/how-we-replicated-five-peer-reviewed-papers-in-five-hours blog])
 
* 2025-07: [https://www.preprints.org/manuscript/202507.1951/v1 Autonomous Scientific Discovery Through Hierarchical AI Scientist Systems]
 
* 2025-07: [https://www.preprints.org/manuscript/202507.1951/v1 Autonomous Scientific Discovery Through Hierarchical AI Scientist Systems]
 +
* 2025-12: [https://arxiv.org/abs/2512.16969 Probing Scientific General Intelligence of LLMs with Scientist-Aligned Workflows]
 +
* 2026-01: [https://www.nature.com/articles/s43588-025-00906-6 SciSciGPT: advancing human–AI collaboration in the science of science]
 +
* 2026-02: [https://allenai.org/papers/autodiscovery AUTODISCOVERY: Open-ended Scientific Discovery via Bayesian Surprise] (Allen AI (Ai2) AstraLabs, [https://allenai.org/blog/autodiscovery blog], [https://autodiscovery.allen.ai/runs tools])
  
 
===Inorganic Materials Discovery===
 
===Inorganic Materials Discovery===
Line 220: Line 234:
 
===Bio===
 
===Bio===
 
* 2025-07: [https://arxiv.org/abs/2507.01485 BioMARS: A Multi-Agent Robotic System for Autonomous Biological Experiments]
 
* 2025-07: [https://arxiv.org/abs/2507.01485 BioMARS: A Multi-Agent Robotic System for Autonomous Biological Experiments]
 +
 +
===Physics===
 +
* 2025-12: [https://arxiv.org/abs/2512.19799 PhysMaster: Building an Autonomous AI Physicist for Theoretical and Computational Physics Research]
  
 
==LLMs Optimized for Science==
 
==LLMs Optimized for Science==
Line 232: Line 249:
 
** 2025-05: Retraction: [https://economics.mit.edu/news/assuring-accurate-research-record Assuring an accurate research record]
 
** 2025-05: Retraction: [https://economics.mit.edu/news/assuring-accurate-research-record Assuring an accurate research record]
 
* 2025-02: [https://arxiv.org/abs/2502.05151 Transforming Science with Large Language Models: A Survey on AI-assisted Scientific Discovery, Experimentation, Content Generation, and Evaluation]
 
* 2025-02: [https://arxiv.org/abs/2502.05151 Transforming Science with Large Language Models: A Survey on AI-assisted Scientific Discovery, Experimentation, Content Generation, and Evaluation]
 +
* 2026-02: [https://arxiv.org/abs/2602.03837 Accelerating Scientific Research with Gemini: Case Studies and Common Techniques]
  
 
=Related Tools=
 
=Related Tools=
Line 254: Line 272:
  
 
=Genuine Discoveries=
 
=Genuine Discoveries=
* '''Math:'''
+
* 2025-11: [https://cdn.openai.com/pdf/4a25f921-e4e0-479a-9b38-5367b47e8fd0/early-science-acceleration-experiments-with-gpt-5.pdf Early science acceleration experiments with GPT-5]
** 2023-07: [https://www.nature.com/articles/s41586-023-06004-9?utm_source=chatgpt.com Faster sorting algorithms discovered using deep reinforcement learning]
+
* 2025-12: [https://andymasley.substack.com/p/ai-can-obviously-create-new-knowledge AI can obviously create new knowledge - But maybe not new concepts]
** 2025-11: [https://arxiv.org/abs/2511.02864 Mathematical exploration and discovery at scale]
+
==Math==
** 2025-11: [https://www.nature.com/articles/s41586-025-09833-y Olympiad-level formal mathematical reasoning with reinforcement learning]
+
* 2023-07: [https://www.nature.com/articles/s41586-023-06004-9?utm_source=chatgpt.com Faster sorting algorithms discovered using deep reinforcement learning]
* '''Physics assistance:'''
+
* 2025-06: [https://arxiv.org/abs/2506.13131 AlphaEvolve: A coding agent for scientific and algorithmic discovery]
** 2025-03: [https://arxiv.org/abs/2503.23758 Exact solution of the frustrated Potts model with next-nearest-neighbor interactions in one dimension via AI bootstrapping]
+
* 2025-11: [https://arxiv.org/abs/2511.02864 Mathematical exploration and discovery at scale]
* '''Literature exploration:'''
+
* 2025-11: [https://www.nature.com/articles/s41586-025-09833-y Olympiad-level formal mathematical reasoning with reinforcement learning]
** 2025-11: [https://arxiv.org/abs/2511.02824 Kosmos: An AI Scientist for Autonomous Discovery]
+
* 2025-12: [https://arxiv.org/abs/2512.14575 Extremal descendant integrals on moduli spaces of curves: An inequality discovered and proved in collaboration with AI]
*** [https://platform.edisonscientific.com/kosmos/c4bdef64-5e9b-43b9-a365-592dd1ed7587 Nucleotide metabolism in hypothermia]
+
* [https://github.com/teorth/erdosproblems/wiki/AI-contributions-to-Erd%C5%91s-problems AI Solving Erdős Problems]:
*** [https://platform.edisonscientific.com/kosmos/1fdbf827-be65-4d97-9b66-bf0da600091a Determinant of perovskite solar-cell failure]
+
** 2026-01: [https://www.erdosproblems.com/728 Erdős Problem #728] and [https://www.erdosproblems.com/729 #729] solved by Aristotle using ChatGPT 5.2 Pro
*** [https://platform.edisonscientific.com/kosmos/4fb3fbdb-c449-4064-9aa6-ff4ec53131d8 Log-normal connectivity in neural networks]
+
** 2026-01: [https://www.erdosproblems.com/forum/thread/397 Erdős Problem #397] [https://x.com/neelsomani/status/2010215162146607128?s=20 solved] by [https://neelsomani.com/ Neel Somani] using ChatGPT 5.2 Pro
*** [https://platform.edisonscientific.com/kosmos/c6849232-5858-4634-adf5-83780afbe3db SOD2 as driver of myocardial fibrosis]
+
** 2026-01: [https://www.erdosproblems.com/205 Erdős Problem #205] solved by Aristotle using ChatGPT 5.2 Pro
*** [https://platform.edisonscientific.com/kosmos/abac07da-a6bb-458f-b0ba-ef08f1be617e Protective variant of SSR1 in type 2 diabetes]
+
** 2026-01: [https://www.erdosproblems.com/forum/thread/281 Erdős Problem #281] [https://x.com/neelsomani/status/2012695714187325745?s=20 solved] by [https://neelsomani.com/ Neel Somani] using ChatGPT 5.2 Pro
*** [https://platform.edisonscientific.com/kosmos/a770052b-2334-4bbe-b086-5149e0f03d99 Temporal ordering in Alzheimer’s disease]
+
** 2026-01: Google DeepMind: [https://arxiv.org/abs/2601.21442 Irrationality of rapidly converging series: a problem of Erdős and Graham]
*** [https://platform.edisonscientific.com/kosmos/28c427d2-be31-48b5-b272-28d5a1e3ea5c Mechanism of neuron vulnerability in aging]
+
*** [https://www.erdosproblems.com/1051 Erdős Problem #1051] [https://x.com/slow_developer/status/2018321002623901885?s=20 solved] by Google DeepMind Aletheia agent
* '''Bio design:'''
+
** 2026-01: Google DeepMind: [https://arxiv.org/abs/2601.22401 Semi-Autonomous Mathematics Discovery with Gemini: A Case Study on the Erdős Problems]
** 2023-07: [https://www.nature.com/articles/s41586-023-06415-8 De novo design of protein structure and function with RFdiffusion]
+
*** Attempted 700 problems, solved 13 open Erdős problems: 5 novel autonomous solutions, 8 through existing literature.
** 2025-11: [https://www.nature.com/articles/s41586-025-09721-5 Atomically accurate de novo design of antibodies with RFdiffusion]
+
* 2026-01: [https://arxiv.org/abs/2601.07222 The motivic class of the space of genus 0 maps to the flag variety]
* '''Material Discovery:'''
+
* 2026-02: Google DeepMind: [https://arxiv.org/abs/2602.10177 Towards Autonomous Mathematics Research]
** 2023-11: [https://doi.org/10.1038/s41586-023-06735-9 Scaling deep learning for materials discovery]
+
 
 +
==Physics assistance==
 +
* 2025-03: [https://arxiv.org/abs/2503.23758 Exact solution of the frustrated Potts model with next-nearest-neighbor interactions in one dimension via AI bootstrapping] ([https://www.bnl.gov/staff/wyin Weiguo Yin])
 +
* 2025-12: [https://www.sciencedirect.com/science/article/pii/S0370269325008111 Relativistic covariance and nonlinear quantum mechanics: Tomonaga-Schwinger analysis]
 +
** [https://x.com/hsu_steve/status/1996034522308026435?s=20 Steve Hsu], [https://drive.google.com/file/d/16sxJuwsHoi-fvTFbri9Bu8B9bqA6lr1H/view Theoretical Physics with Generative AI]
 +
* 2026-02: [https://arxiv.org/abs/2602.12176 Single-minus gluon tree amplitudes are nonzero] (GPT-5.2, [https://openai.com/index/new-result-theoretical-physics/ blog])
 +
 
 +
==Literature exploration==
 +
* 2025-11: [https://arxiv.org/abs/2511.02824 Kosmos: An AI Scientist for Autonomous Discovery] ([https://edisonscientific.com/ Edison])
 +
** [https://platform.edisonscientific.com/kosmos/c4bdef64-5e9b-43b9-a365-592dd1ed7587 Nucleotide metabolism in hypothermia]
 +
** [https://platform.edisonscientific.com/kosmos/1fdbf827-be65-4d97-9b66-bf0da600091a Determinant of perovskite solar-cell failure]
 +
** [https://platform.edisonscientific.com/kosmos/4fb3fbdb-c449-4064-9aa6-ff4ec53131d8 Log-normal connectivity in neural networks]
 +
** [https://platform.edisonscientific.com/kosmos/c6849232-5858-4634-adf5-83780afbe3db SOD2 as driver of myocardial fibrosis]
 +
** [https://platform.edisonscientific.com/kosmos/abac07da-a6bb-458f-b0ba-ef08f1be617e Protective variant of SSR1 in type 2 diabetes]
 +
** [https://platform.edisonscientific.com/kosmos/a770052b-2334-4bbe-b086-5149e0f03d99 Temporal ordering in Alzheimer’s disease]
 +
** [https://platform.edisonscientific.com/kosmos/28c427d2-be31-48b5-b272-28d5a1e3ea5c Mechanism of neuron vulnerability in aging]
 +
==Bio design==
 +
* 2023-07: [https://www.nature.com/articles/s41586-023-06415-8 De novo design of protein structure and function with RFdiffusion]
 +
* 2025-11: [https://www.nature.com/articles/s41586-025-09721-5 Atomically accurate de novo design of antibodies with RFdiffusion]
 +
* 2025-11: [https://deepmind.google/blog/alphafold-five-years-of-impact/ AlphaFold: Five years of impact]
 +
* 2026-01: [https://www.goodfire.ai/research/interpretability-for-alzheimers-detection# Using Interpretability to Identify a Novel Class of Alzheimer's Biomarkers]
 +
==Material Discovery==
 +
* 2023-11: [https://doi.org/10.1038/s41586-023-06735-9 Scaling deep learning for materials discovery]
  
 
=See Also=
 
=See Also=
 
* [[AI agents]]
 
* [[AI agents]]
 
* [https://nanobot.chat/ Nanobot.chat]: Intelligent AI for the labnetwork @ mtl.mit.edu forum
 
* [https://nanobot.chat/ Nanobot.chat]: Intelligent AI for the labnetwork @ mtl.mit.edu forum

Latest revision as of 14:22, 17 February 2026

AI Use-cases for Science

Literature

LLM extract data from papers

AI finding links in literature

(Pre) Generate Articles

Explanation

Autonomous Ideation

Adapting LLMs to Science

AI/LLM Control of Scientific Instruments/Facilities

AI/ML Methods tailored to Science

Science Foundation Models

Regression (Data Fitting)

Tabular Classification/Regression

Symbolic Regression

Literature Discovery

Commercial

Bio

AI/ML Methods in Science

Imaging

Materials

Chemistry

Biology

Medicine

See: AI_Agents#Medicine

Successes

AI/ML Methods co-opted for Science

Mechanistic Interpretability

Train large model on science data. Then apply mechanistic interpretability (e.g. sparse autoencoders, SAE) to the feature/activation space.

Uncertainty

Science Benchmarks

Science Agents

Reviews

Challenges

Specific

Science Multi-Agent Setups

AI Science Systems

Inorganic Materials Discovery

Materials Characterization

Chemistry

Bio

Physics

LLMs Optimized for Science

Impact of AI in Science

Related Tools

Literature Search

Data Visualization

Generative

Chemistry

Science Datasets

Genuine Discoveries

Math

Physics assistance

Literature exploration

Bio design

Material Discovery

See Also